The role of C-Fos protein, somatostatin and neuropeptide Y in the pathogenesis of ischemic brain injuries based on animal model of cerebral ischemia.
نویسندگان
چکیده
The aim of this study was to define all the areas of changes in expression of nuclear c-Fos protein (c-Fos), cytoplasmic somatostatin (SS) and neuropeptide Y (NPY) in rat brain during experimental ischemia. Using the immunohistochemical method, brain mapping (based on the atlas by Paxinos & Watson) of immunoreactivity for c-Fos, SS and NPY in 39 rats, was studied in telencephalon, diencephalon and midbrain after resistant and transitory ischemia. The first experimental group (R group) was exposed to resistant ischemia by occlusion (10 minutes) of four vessels according to the Pulsinelli method. The second group was first exposed to transitory (4 minutes) ischemia (preconditioning) and, after 72 hours, to total ischemia as in the R group. There was a statistical difference between the R and T group in the c-Fos reaction, especially in the parietofrontal cortex, anterior amygdaloid area, claustrum, reuniens nucleus and suprachiasmatic nucleus. The dominant immunohistochemical reactivity was found for c-Fos protein, and the most reactive in terms of co-localization of c-Fos with SS and NPY was periventricular area of hypothalamus. The mapping showed that both, phylogenetically new as well as phylogenetically older brain structures reacted immunohistochemically. The results of our study, regarding the impact of preconditioning with a short period of ischemia on c-Fos activity and co-localization of c-Fos with SS and NPY immunoreactivity, showed the need for future studies of brain neuropeptides related to regional and time effects, and indicated brain structures which may require pharmacological targeting to achieve neuroprotective level of proto-oncogene activity in populations at risk.
منابع مشابه
L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملFunctionalized fullerene materials (fullerol nanoparticles) reduce brain injuries during cerebral ischemia-reperfusion in rat
Aim: Oxidative stress plays a crucial role in the pathophysiology of ischemic stroke. Since water-solublefullerene derivatives act as the potent scavenger of oxygen free radicals in biological systems, we aimedto investigate the possible protective effects of fullerol nanoparticles on brain infarction and edema intransient model of focal cerebral ischemia in rat.Materials & Methods: Experiment ...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملComparison effect of pentobarbital sodium with chloral hydrate anesthesia on post-ischemic damage in an experimental model of focal cerebral ischemia
Introduction: Anesthetic agents, blood pressure, arterial pH and blood gases have found to influence on the pathophysiology of experimental stroke. Despite, there are very few comparative studies about effects of anesthetic agents in animal model of cerebral ischemia. Therefore, in this study, we investigated the effects of chloral hydrate and pentobarbital anesthesia, as comparative study, on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Collegium antropologicum
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2013